- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Lao, Yingjie (3)
-
Clements, Joseph (2)
-
Clements, Joseph Franklin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Clements, Joseph; Lao, Yingjie (, Proceedings of the AAAI Conference on Artificial Intelligence)This paper presents a framework for embedding watermarks into DNN hardware accelerators. Unlike previous works that have looked at protecting the algorithmic intellectual properties of deep learning systems, this work proposes a methodology for defending deep learning hardware. Our methodology embeds modifications into the hardware accelerator's functional blocks that can be revealed with the rightful owner's key DNN and corresponding key sample, verifying the legitimate owner. We propose an Lp-box ADMM based algorithm to co-optimize watermark's hardware overhead and impact on the design's algorithmic functionality. We evaluate the performance of the hardware watermarking scheme on popular image classifier models using various accelerator designs. Our results demonstrate that the proposed methodology effectively embeds watermarks while preserving the original functionality of the hardware architecture. Specifically, we can successfully embed watermarks into the deep learning hardware and reliably execute a ResNet ImageNet classifiers with an accuracy degradation of only 0.009%more » « less
-
Clements, Joseph; Lao, Yingjie (, ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP))
An official website of the United States government
